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Interior Dirichlet eigenvalue problem, exterior Neumann scattering problem, and boundary
element method for quantum billiards
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An explicit expression for the Fredholm determinantD(E) appearing in the boundary element method for
two-dimensional quantum billiards is derived in terms of the interior Dirichlet eigenenergies and exterior
Neumann scattering phase shifts. Not only in the semiclassical regime but also in all order of\, D(E) admits
the factorization into the interior and exterior contributions, where the former has zeros at interior Dirichlet
eigenenergies and the latter at resonances of the Neumann scattering. A new aspect of the Kac’s inverse
problem is also discussed.@S1063-651X~97!50507-1#
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The billiard problem is one of the simplest but nontrivi
models to see the manifestation of classical chaos in qu
tum mechanics@1#. The eigenvalue problem of quantum b
liards, i.e., the Helmholtz equation on a certain bounded
main, cannot be solved analytically in general. The bound
element method~BEM! @2,3# is a powerful numerical ap
proach in that it does not require any special conditions
the billiard shape but merely solves an integral equation
proximately by discretizing the boundary. Also, the BE
provides an idea for the novel semiclassical quantization
using the transfer operator@4#. Direct connection in the semi
classical regime can be made between the determinant o
kernel appearing in the BEM and the semiclassical zeta fu
tion of the Gutzwiller-Voros type@5#. Recently, Georgeo
and Prange have shown that the BEM can be character
by the Fredholm theory and obtained a resummation form
of the periodic orbit sum@6#. Furthermore, based on h
study on the nonconvex billiard system, Hesse conjectu
that the Fredholm determinant is factorized into two pa
one related to the interior Dirichlet problem and the other
the exterior Neumann problem, and that the complex ze
of the determinant are resonances of the exterior problem@7#.
Not only in the semiclassical regime, but as fully quantu
problem, this inside-outside duality of quantum billiards, e
pecially with Dirichlet boundary conditions for both interio
and exterior problems, is drawing a lot of attention@7–12#.
Some rigorous relations between the interior and exte
problems are proved by Eckmann and Pillet@11,12#.

Here we present a natural extension of our previous w
@5# and some rigorous and explicit relations among the
terminant appearing in the BEM, eigenenergies of the in
rior Dirichlet problem, and the scattering phase shifts of
exterior Neumann problem. Our results positively so
Hesse’s conjecture to all orders of\ and reproduce one o
the relations found by Eckmann and Pillet@12#. In the light
of our results, we finally argue a new aspect of the Ka
famous inverse problem@13#.
561063-651X/97/56~1!/13~4!/$10.00
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First let us briefly formulate the BEM. ConsiderB, a two-
dimensional bounded domain with a boundary]B. The
eigenenergyE of a particle with massm moving inB is the
eigenenergy of the interior Dirichlet problem for the Helm
holtz equation:

¹2c~r !1
2mE

\2 c~r !50 ~r in B!, ~1!

where the wave function vanishes on the boundary]B. With
the aid of the free Green’s function for the Helmholtz equ
tion G0(r ,r 8;E)52 1

4iH 0
(1)@(A2mE/\)ur2r 8u# with H0

(1)

the zero-order Hankel function of the first kind@14#, this
problem can be rewritten as a Fredholm integral equation
the second kind:

]c„r ~ t !…

]nt
2 R

]B
ds K~ t,s!

]c„r ~s!…

]ns
50,

~2!

K~ t,s![22
]G0„r ~ t !,r ~s!;E…

]nt
.

The Fredholm theory tells us that the eigenenergies are z
of the Fredholm determinantD(E):

D~E![11 (
n51

`

Dn~E!, ~3!

where

Dn~E!5
~21!n

n! R
]B
ds1•••

3 R
]B
dsnUK~s1 ,s1! . . . K~s1 ,sn!

A � A

K~sn ,s1! . . . K~sn ,sn!
U . ~4!
R13 © 1997 The American Physical Society
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The BEM is the numerical method that gives approxim
eigenenergies as the minima of the absolute value of
determinant calculated by discretizing the boundary integ
in Eq. ~4!.

By similar arguments to those of@5#, one can show
Hesse’s conjecture of the factorization of the Fredholm
terminant for strongly chaotic billiards in the semiclassic
regime:

Dsc~E!5er]B~1/2p!k~s!dsd̃int
sc~E!d̃ext

sc ~E!, ~5!

where

d̃int
sc~E!5 )

p: interior
)
k50

` H 12expF i A2mE

\
l p2

sp

2
p i

1Npp i2S k1
1

2D lpl p1kpp i G J , ~6!

d̃ext
sc ~E!5 )

p:exterior
)
k50

` H 12expF i A2mE

\
l p2

sp

2
p i

2S k1
1

2D lpl p1kpp i G J , ~7!

In the above the products)p: interior and)p:exterior run over all
primitive periodic orbits insideB and outsideB, respec-
tively. l p , sp, Np , lp, andkp represent length, number o
conjugate points, number of bounces at the boundary, st
ity index and index specifying the type of primitive period
orbit p, respectively. Andk(s) is the curvature of the bound
ary at the pointr (s).

As already discussed in@5#, zeros of the interior par
d̃int
sc(E)can give the eigenenergies of the interior Dirich

problem because it is equal to the Gutzwiller-Voros z
function z(E). On the other hand, following the discussio
by Gaspard and Rice@15#, the exterior partd̃ext

sc (E)is found
to be related to theSmatrix of the Neumann scattering prob
lem:

1

2p i
trS ŜN† ~E!

dŜN~E!

dE D >2
1

p
Im

]

]E
ln d̃ext

sc ~E!2
mA

2p\2 ,

~8!

whereA is the area of the billiard domain andŜN(E) is the
on-shellSmatrix with energyE for the Neumann scattering

ŜN~E! f ~u!5 f ~u!2
1

2p R
]B
ds e2 iknu•r ~s!

3E
0

2p

du8knu8•nse
iknu8•r ~s! f ~u8!

2
1

2p R
]B
ds R

]B
dt e2 iknu•r ~s!

N~s,t;E!

D~E!

3E
0

2p

du8knu8•nte
iknu8•r ~ t ! f ~u8!. ~9!

In the above,f (u) is a function of the scattering angleu(0
<u,2p), k5A2mE/\, nu5(cosu,sinu), r (s) stands for a
e
e
al

-
l

il-

t
a

position on the boundary]B and ns for the outer normal
vector to]B at r (s), andN(s,t;E)is the Fredholm first mi-
nor:

N~s,t;E![K~s,t !1 (
n51

`

Nn~s,t;E!, ~10!

whereNn(s,t;E)’s are the kernels of the operatorsNn de-
fined via the recursion relationNn5Dn(E)K1KNn21, with
Dn(E)of Eq. ~4!, N05K , andK the operator correspondin
to K(s,t;E) @6,16#.

Actually, the factorization@5# holds to all order of\ and
thus fully quantum mechanically.

Proposition 1.Suppose thatB is a bounded domain in
R2with piecewiseC2 boundary]B and R2/Bis connected
~i.e., the standard domain of Eckmann and Pillet@11,12#!.
Then ~1! D(E) admits the decomposition

D~E!5D~0!dint~E!dext~E!, ~11!

dint~E!5expH 2m\2 E
0

E

dE8

3E
B
d2r @GD~r ,r 8;E!2G0~r ,r 8;E8!# r85rJ ,

~12!

dext~E!5expH 2m\2 E
0

E

dE8 lim
R→`

3E
CR\B

d2r @GN~r ,r 8;E!2G0~r ,r 8;E8!# r85rJ ,
~13!

whereGD andGN are, respectively, the Green’s function
for the interior Dirichlet and exterior Neumann problem
CR the disk of radiusR containingB, and the valueD(0) of
D(E) atE50 is real.~2! The interior partdint(E) admits the
Hadamard factorization:

dint~E!5ei ~mA/2\2!ESml 2E

2\2 D 2~mA/2p\2!E

3e2~mA/p\2!g8E)
n51

` S 12
E

En
DeE/En, ~14!

where En’s are the eigenenergies of the interior Dirichl
problem,A the area of the billiard domainB, l the perimeter
of the boundary]B, andg8 a real constant depending on th
geometry ofB. The product converges as a consequence
Weyl’s relation between the cumulative density of states a
energyE. ~3! The exterior part is related to the scattering

dext~E!5expHEE
0

` E8

2p

1

E2E81 i0

3SmA

\2 2
2

E8 (m51

`

dm~E8!D J , ~15!
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wheredm(E) is the phase shift of the exterior Neumann sc
tering problem ande22idm(E) is an eigenvalue of the on-she
Smatrix ŜN(E). The existence of the countable phase sh
and the convergence of the sum(m51

` dm(E)follow from the
fact that ŜN(E)2I is trace class. Note also tha
ln det ŜN(E)522i(m51

` dm(E).
In the following we show the outline of the derivation o

Eqs.~11!–~15!.
As is well known@17#, by applying the potential theory

the Green function for the interior Dirichlet problem is give
by

GD~r ,r 8;E!

5G0~r ,r 8;E!22 R
]B
dsHG0„r ,r ~s!;E…

1 R
]B
dt G0„r 8,r ~ t !;E…

N~ t,s;E!

D~E! J ]G0„r ~s!,r ;E…

]ns

~16!

and that for the exterior Neumann problem by Eq.~16! with
r and r 8 interchanged. Using this and after straightforwa
calculations we have

E
B
d2r @GD~r ,r 8;E!2G0~r ,r 8;E!# r85r

1 lim
R→`

E
CR\B

d2r @GN~r ,r 8;E!2G0~r ,r 8;E!# r82r

52
\2

2m F R
]B
ds R

]B
dt

N~s,t;E!

D~E!

]K~ t,s!

]E

1 R
]B
ds

]K~s,s!

]E G
5

\2

2m

]

]E
lnD~E!. ~17!

Hence we get the desired factorization~11!–~13!. As
@K(s,t)#E50 is real,D(0) is real.

Next we consider the interior part of Eq.~17!, which is a
sum of three terms. The first term is

E
B
d2r @GD~r ,r 8;E!2GD~r ,r 8;0!# r85r

5
\2

2m(
n51

` S 1

E2En
1

1

En
D , ~18!

whereEn are the eigenenergies for the interior Dirichlet e
genvalue problem. The second term is

2E
B
d2r FG0~r ,r 8;E!2

1

2p
ln

ur2r 8u
l

G
r85r

5
i

4
A2

A

4p
lnSml 2

2\2 ED2
gA

2p
, ~19!
-

s

whereg is the Euler constant. The third term defines a co
stantg8 as

E
B
d2r FGD~r ,r 8;0!2

1

2p
ln

ur2r 8u
l

G
r85r

[
A

2p S g2
1

2
2g8D , ~20!

whereg is real sinceGD(r ,r 8;0)is real. Combining Eqs.~12!
and ~18!–~20!, we obtain Eq.~14!.

Finally we discuss the exterior part. Since bothGN and
G0 are the Green functions for the outgoing boundary c
dition, we have

lim
R→`

E
CR \B

d2r @GN~r ,r 8;E8!2G0~r ,r 8;E8!# r85r

5E
0

`

dE9
r~E9!

E82E91 i0
, ~21!

with the real densityr:

r~E9!5
21

p
Im lim

R→`
E
CR\B

d2r @GN~r ,r 8;E9!

2G0~r ,r 8;E9!# r85r .

Now, because of the Friedel relation@15,18,19#

lim
R→`

H E
CR \B

d2r @ Im GN~r ,r 8;E!# r85r

2E
CR

d2r @ Im G0~r ,r 8;E!# r85rJ
52

\2

4mi
trF ŜN† ~E!

]ŜN~E!

]E G ,
and*Bd

2r @ Im G0(r ,r 8;E)# r85r52A/4, we get

r~E!5
1

p

]

]E FAE4 1
\2

4mi
ln det ŜN~E!G . ~22!

Substituting Eq.~22! into Eq. ~21!, carrying outE8 integra-
tion in Eq. ~13!, and using ln detŜ(E)522i(m51

` dm(E),
we obtain Eq.~15!. Details of the proof of Proposition 1 wil
be shown elsewhere@20#. Proposition 1 also characterize
zeros of the interior and exterior parts.

Proposition 2.~1! Interior partdint(E) has zeros precisely
at the eigenenergies of the interior Dirichlet problem.~2!
Exterior partdext(E) has no zeros on the first Riemann she
$E5uEueiuu0<u,2p%. Its analytic extensiondext

II (E) from
the upper half plane of the first Riemann sheet to the low
half plane of the second Riemann sheet through the pos
real axis is

dext
II ~E!5e2 i ~mA/\2!E

dext~E!

det ŜN
II ~E!

, ~23!
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whereŜN
II is the analytic extension ofŜN to the second Rie-

mann sheet. Equation~23! implies that zeros ofdext
II (E) are

the poles of theSmatrix, or the resonances.
The statement~1! is trivial from Proposition 1. Because o

Eq. ~15!, we see that lndext(E) is a boundary value of an
analytic function to the positive real axis from above. Hen
ln dext(E) is analytic on the first Riemann sheet, and, th
dext(E)has no zeros there. From Eq.~15! for realE(.0), we
have

dext~E2 i0!

dext~E1 i0!
5ei ~mA/\2!E det ŜN~E!. ~24!

By analytically continuing this with respect toE from the
upper to the lower half plane, we obtain Eq.~23!. This
proves Proposition 2. Details will be discussed elsewh
@20#.

Proposition 1 shows that Hesse’s conjecture@7# on the
factorization of the Fredholm determinantD(E) into the in-
terior and exterior parts holds in the semiclassical regime
well as to all order of\. In particular an explicit closed form
including all regularization factors, of the Hadamard fact
ization is obtained for the factor related to the interior D
richlet problem. Our results~11!–~15! also give one of the
relations obtained by Eckmann and Pillet@12# for real E
(.0):

p (
n51

`

u~E2En!5 (
m51

`

dm~E!2Im ln D~E1 i0!, ~25!

whereu(E) shows the Heaviside step function. This sho
that the Fredholm determinantD(E) and Eckmann-Pillet’s
function zDN , which is related to the interior Dirichlet an
exterior Neumann problem@12#, differ by a real factor for
n

A

,
,

re

s

-

s

realE(.0). Proposition 2 states that the zeros of the Fr
holm determinantD(E) are either the eigenenergies of th
interior Dirichlet problem or the resonances of the exter
Neumann scattering problem. Hence, this fully characteri
zeros ofD(E). It is important that in the numerical calcula
tion of the BEM not only the eigenenergies of the interi
Dirichlet problem but also the resonance energies of the
terior Neumann scattering can give the minima of the ab
lute value ofD(E)when the poles of theS matrix are very
near the real axis. This result implies the generality
Hesse’s observation@7# on the zeros of the Fredholm dete
minant for nonconvex billiards.

Our result also gives an interesting insight into Kac’s
verse problem: ‘‘Can one hear the shape of a drum?’’@13#.
To this problem, some nontrivial counterexamples of t
two-dimensional planar billiards are known@21#. This fact
can be reinterpreted from the present result. That is, eve
two domainsB andB8 have the same eigenenergy spect
they may have different scattering. This suggests that Ka
problem should be modified as ‘‘Can one determine
shape of a drum through the spectrum of the interior Diric
let problemand the cross sections of the exterior Neuma
scattering?’’
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