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An explicit expression for the Fredholm determin@E) appearing in the boundary element method for
two-dimensional quantum billiards is derived in terms of the interior Dirichlet eigenenergies and exterior
Neumann scattering phase shifts. Not only in the semiclassical regime but also in all ofidéy (&) admits
the factorization into the interior and exterior contributions, where the former has zeros at interior Dirichlet
eigenenergies and the latter at resonances of the Neumann scattering. A new aspect of the Kac's inverse
problem is also discusse51063-651X97)50507-1

PACS numbse(s): 05.45+b, 02.60.Lj, 03.65.Sq

The billiard problem is one of the simplest but nontrivial ~ First let us briefly formulate the BEM. ConsidBr a two-
models to see the manifestation of classical chaos in quamimensional bounded domain with a boundaf. The
tum mechanic$l]. The eigenvalue problem of quantum bil- eigenenergye of a particle with massn moving inB is the
liards, i.e., the Helmholtz equation on a certain bounded doeigenenergy of the interior Dirichlet problem for the Helm-
main, cannot be solved analytically in general. The boundarjioltz equation:
element methodBEM) [2,3] is a powerful numerical ap-
proach in that it does not require any special conditions on
the billiard shape but merely solves an integral equation ap-
proximately by discretizing the boundary. Also, the BEM
provides an idea for the novel semiclassical quantization rul
using the transfer operatpt]. Direct connection in the semi- the aid of the free Gree(rl)s function for the Helmholtz((la)qua-
classical regime can be made between the determinant of tﬁ@” Go(r,r';E)=—giHg [(V2mE/A)|r—r'[] with Hg

kernel appearing in the BEM and the semiclassical zeta funcI e zero-order Hankel functlon of the first kirid4], th|s
tion of the Gutzwiller-Voros typg5]. Recently, Georgeot problem can be rewritten as a Fredholm integral equation of

V2w<r>+ wm 0 (rin B), (6N

(gvhere the wave function vanishes on the bounddyWith

and Prange have shown that the BEM can be characterize
by the Fredholm theory and obtained a resummation formula
of the periodic orbit sun{6]. Furthermore, based on his
study on the nonconvex billiard system, Hesse conjectured
that the Fredholm determinant is factorized into two parts,
one related to the interior Dirichlet problem and the other to
the exterior Neumann problem, and that the complex zeros
of the determinant are resonances of the exterior problém

ap(r(1))
ﬁ—l’lt_ 328(13 K(t,S)a—nS =0,

Be second kind:

aP(r(s))

(2
dGo(r(t),r(s);E)

K(t,s)=-2 an,

Not only in the semiclassical regime, but as fully quantumThe Fredholm theory tel_ls us that the eigenenergies are zeros
problem, this inside-outside duality of quantum billiards, es-of the Fredholm determinar (E):

pecially with Dirichlet boundary conditions for both interior
and exterior problems, is drawing a lot of attentigh-12).
Some rigorous relations between the interior and exterior
problems are proved by Eckmann and Pi[l&t,12.

Here we present a natural extension of our previous workvhere

[5] and some rigorous and explicit relations among the de-
terminant appearing in the BEM, eigenenergies of the inte-
rior Dirichlet problem, and the scattering phase shifts of the
exterior Neumann problem. Our results positively solve
Hesse’s conjecture to all orders #fand reproduce one of
the relations found by Eckmann and Pil[@2]. In the light

of our results, we finally argue a new aspect of the Kac’s
famous inverse problefd3].
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The BEM is the numerical method that gives approximateposition on the boundaryB and ng for the outer normal

eigenenergies as the minima of the absolute value of thgector tosB atr(s), andN(s,t;E)is the Fredholm first mi-
determinant calculated by discretizing the boundary integrag,-

in Eq. (4).
By similar arguments to those db], one can show >
Hesse’s conjecture of the factorization of the Fredholm de- N(st;E)=K(s,t)+ 2 Ny(st;E), (10
terminant for strongly chaotic billiards in the semiclassical n=1
regime. where N, (s,t;E)’s are the kernels of the operatorg, de-
DSY E) = efr(1/2m k()dSF5¢( £V gSC (E fined via the recursion relatioN,,=D,(E)K +KN_4, with
B)=e dini(E) dex(E), © D, (E)of Eq. (4), Ny=K, andK the operator corresponding
where to K(s,t;E) [6,16].
Actually, the factorizatiorj5] holds to all order of: and
~ - J2mE o, thus fully quantum mechanically.
din(E)= H kHo ‘1—9XF{I 7 |p—7p i Proposition 1.Suppose thaB is a bounded domain in
prinferiorie= R2with piecewiseC? boundarydB and R%/Bis connected
1 (i.e., the standard domain of Eckmann and Piltet,17]).
+Np7i—| K+ > NplptKpmi |, (6)  Then(1) D(E) admits the decomposition
. D(E)=D(0)d;(E)deylE), (12)
_ ' \/ﬁ O'p ' ( ( |nt( ext(
dsE)= II Il {1-expi ——1,-=" mi
p:exterior k=0 h 2 2m (E ,
di(E)=exp - | dE
1 h=Jo
- k+§ Nplpt Kpri } (7)

xf d2r[GD(r,r’;E)—Go(r,r';E’)],,r},
In the above the product$,. iyierior aNAIT . exterior UN OVer all B
primitive periodic orbits insideB and outsideB, respec- (12
tively. I,, op, Np, Ap, andk, represent length, number of
conjugate points, number of bounces at the boundary, stabil- d I(E)Zexpl' ZmJ
ity index and index specifying the type of primitive periodic =~ a
orbit p, respectively. Andc(s) is the curvature of the bound-

E .
dE’ lim
0 R—®

ary at the point(s). ) ) L

__ As already discussed iff], zeros of the interior part XL \Bd rlGN(r.r';E)=Go(r.r';E )]r’r}'
diS(E)can give the eigenenergies of the interior Dirichlet R

problem because it is equal to the Gutzwiller-Voros zeta (13

function {(E). On the other hand, following the discussion . , .

by G d and RicEL5] th eri 55 (EYis found where G, and Gy are, respectively, the Green’s functions
y Gaspard and Ricel ] e exterior partle,( )IS. oun for the interior Dirichlet and exterior Neumann problems,

to be related to th&matrix of the Neumann scattering prob- Cr the disk of radiusR containingB, and the valu®(0) of

lem: D(E) atE=0 is real.(2) The interior part;,(E) admits the
1 & dASN(E) 1 | P e e mA Hadamard factorization:
2mi N(E) dE |~ 7M™ et ) 2mh?’ . o[ m/2E) ~(mA2TidE
) (8) di(E) =€/ (MmA2? >E( TR )
whereA is the area of the billiard domain arg{(E) is the © E
on-shellS matrix with energyE for the Neumann scattering: « ef(mNﬁﬁZ)yEH ( 1— E_) eEEn (14
n=1 n
~ 1 )
— _ ikvy-r(S)
SNET(9)=1(0) 2 fﬁgds e where E’'s are the eigenenergies of the interior Dirichlet
problem,A the area of the billiard domaiB, /” the perimeter
v zwda'kv ek r TS (g1 of the boundaryB, andy’ a real constant depending on the
0 o7 geometry ofB. The product converges as a consequence of
Weyl's relation between the cumulative density of states and
1 é ds é dte-ixr (o N(s,t;E) energyE. (3) The exterior part is related to the scattering:
2w Jam 9B D(E)
dexd E) Efw £ !
2w . :eX ~ —,
% do'kwy -nekve TOF('). (9) ex 02w E—E’'+i0
0
, . . mA 2 ,
In the abovef(#) is a function of the scattering angl0 X Fya ?Z Sn(E") | 1, (15
<6<2mw), k=+v2mFE/#%, vy=(cosé,sin 6), r(s) stands for a m=1
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whereé,(E) is the phase shift of the exterior Neumann scat-wherey is the Euler constant. The third term defines a con-
tering problem ana~2'°m(®) is an eigenvalue of the on-shell stanty’ as
S matrix Sy(E). The existence of the countable phase shifts

and the convergence of the SN, , m(E)follow from the d2r| Gy(r,r’ 0)_ u}
fact that Sy(E)—1 is trace class. Note also that B 4 r=r
In det S\(E)=—2i2 . _16m(E). A 1
In the following we show the outline of the derivation of E_( - 7') , (20)
Egs. (11)—(15). 2m\ " 2

As is well known[17], by applying the potential theory,
the Green function for the interior Dirichlet problem is given and (18)—(20), we obtain Eq(14).

b
y Finally we discuss the exterior part. Since b@k and
Gp(r,r';E) G, are the Green functions for the outgoing boundary con-
dition, we have

wherey s real sinceGp(r,r’;0)isreal. Combining Eq912)

=Gy(r,r';E)—2 ds{ Gyf(r, E
O(r r ) %&B S{ O(r r(S) ) Ilmf dzr[GN(r,r,;E,)—Go(r,r’;E’)]r/:r
Cr\B

R—o

N(t,S;E) | 9Go(r(s),r;E
+j€ dt Go(r',r(t);E) (D(SE))] o(r;::r ) f (o P(E o1
(16) E”+|O

and that for the exterior Neumann problem by Etp) with ~ With the real density:

r andr’ interchanged. Using this and after straightforward _

calculations we have p(Er,)_ —“m lim f d2r[Gy(r,r':E")
Cr\B

R—

2 ’. _ ’. R
de r[Gp(r,r';E)—Go(r,r'";E)]yr—, =Go(r,r";E") =

Now, because of the Friedel relatiph5,18,19
+ Iimf d2r[G(r,r";E)—Go(r,r";E) ],
Cr\B

R

Iim:f d2r[Im Gy(r,r";E) ]y =,
Cr\B

2 N(s,t;E) dK(t,S) R
2m f# ds ¢ dt—5E T~ ~IE
— | d?[Im Go(r,r’;E)]r,zr]
+§ q JK(s,s) Ca
B JE SN( |
0 ——mt SW(E) :
=2maE "P(E)- (17)

and [gd?r[Im Gq(r,r";E)], —,= — Al4, we get
Hence we get the desired factorizatiqdl)—(13). As
[K(s,t)]g=0 is real,D(0) is real. 19

p(B)=—-E

AE #? -
Next we consider the interior part of E(L7), which is a mi

sum of three terms. The first term is Substituting Eq(22) into Eq. (21), carrying outE’ integra-

) , , tion in Eqg. (13), and using In deS(E)=—2i2; _,6m(E),

de r[Gp(r,r";E)=Gp(r,r’;0) ] = we obtain Eq(15). Details of the proof of Proposition 1 will
be shown elsewherg20]. Proposition 1 also characterizes
zeros of the interior and exterior parts.

(18 Proposition 2.(1) Interior partd;«(E) has zeros precisely

at the eigenenergies of the interior Dirichlet problef®)

Exterior partde,{ E) has no zeros on the first Riemann sheet:

{E=|E|€'’|0<@<27}. Its analytic extensiom (E) from

the upper half plane of the first Riemann sheet to the lower

B 72 = 1 1
T 2mEs E,

—
E-E, E,

whereE,, are the eigenenergies for the interior Dirichlet ei-
genvalue problem. The second term is

. Ir—r’| half plane of the second Riemann sheet through the positive
f d { Go(r,r’ E)——I 7 Lr real axis is
[ A [ms? yA d" (E)=e i(MARE Ao E) 23
"M '”(W )‘z* 19 o det SW(E)” =
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WhereAS',\'lis the analytic extension chN to the second Rie- realE(>0). Proposition 2 states that the zeros of the Fred-

mann sheet. Equatiof23) implies that zeros ofll,(E) are ~ holm determinanD(E) are either the eigenenergies of the
the poles of theS matrix, or the resonances. interior Dirichlet problem or the resonances of the exterior

The statementtl) is trivial from Proposition 1. Because of Neumann scattering problem. Hence, this fully characterizes

: fD(E). It is important that in the numerical calcula-
Eqg. (15), we see that Inl,,(E) is a boundary value of an ZEros o ; , e
analytic function to the positive real axis from above. Hence 107 Of the BEM not only the eigenenergies of the interior
. : . ) Dirichlet problem but also the resonance energies of the ex-
In d.,(E) is analytic on the first Riemann sheet, and, thus

terior Neumann scattering can give the minima of the abso-
dex(E)has no zeros there. From H@5) for realE(>0), We |10 yajue ofD(E)when the poles of th& matrix are very

have near the real axis. This result implies the generality of

d . Hesse's observatiof7] on the zeros of the Fredholm deter-

ext(E |0) . .

e (24)  minant for nonconvex billiards.

dex(E+i0) Our result also gives an interesting insight into Kac's in-
verse problem: “Can one hear the shape of a drufi3].
To this problem, some nontrivial counterexamples of the
two-dimensional planar billiards are know@1]. This fact
%an be reinterpreted from the present result. That is, even if
two domainsB andB’ have the same eigenenergy spectra,
they may have different scattering. This suggests that Kac'’s
roblem should be modified as “Can one determine the
hape of a drum through the spectrum of the interior Dirich-
let problemand the cross sections of the exterior Neumann
scattering?”

elMA?E get S (E).

By analytically continuing this with respect & from the
upper to the lower half plane, we obtain E®3). This
proves Proposition 2. Details will be discussed elsewher
[20].

Proposition 1 shows that Hesse's conject{iré¢ on the
factorization of the Fredholm determindd{E) into the in-
terior and exterior parts holds in the semiclassical regime ag
well as to all order ofi. In particular an explicit closed form,
including all regularization factors, of the Hadamard factor-
ization is obtained for the factor related to the interior Di-
richlet problem. Our result§11)—(15) also give one of the We are grateful to Dr. N. Egami, Dr. P. Davis, Professor
relations obtained by Eckmann and Pill@2] for real E P, Gaspard, Professor K. S. Ikeda, and Professor Y. Taka-
(>0): hashi for fruitful discussions and comments. S.T. thanks Pro-
fessor K. Fukui for his encouragement and support. A.S. is
very much grateful for warm hospitalities at Institute Henri
Poincare. The work was partially supported by a Grant-in-
Aid for Scientific Research and a grant under the Interna-
where 8(E) shows the Heaviside step function. This showstional Scientific Research Program both from Ministry of
that the Fredholm determinafii(E) and Eckmann-Pillet's Education, Science and Culture of Japan as well as the Re-
function {py, Which is related to the interior Dirichlet and search for the Future of Japan Society of the Promotion of
exterior Neumann probleri 2], differ by a real factor for Science.

7721 O(E—E,)= 2_)1 S+(E)—ImIn D(E+i0), (25)
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